
? 

~jlL, l l v j  i =l: 

Direct and large-eddy simulation of 
turbulent fluid flow using the 
lattice-Boltzmann scheme 
Jack G. M. Eggels 
Shel l  I n te rna t i ona l  Oil  Products  B. V., Shel l  Research and Techno logy  Centre,  A m s t e r d a m ,  The Ne the r l ands  

This paper reports on direct and large-eddy simulat ions (LES) of turbulent f lows using the 
latt ice-Boltzmann scheme for the discretization of the Navier-Stokes equations. It is divided 
into two parts• The first part deals wi th direct simulat ion of ful ly developed turbulent 
channel f low wi th heat transfer in order to check the performance of our solver. It is shown 
that the present numerical results agree wel l  w i th  the numerical results reported by Kim 
et al. (1987). The second part deals wi th  large-eddy simulat ion (LES) of the turbulent f low 
in a baffled stirred tank reactor• This kind of equipment is frequently used in the 
(petro)chemical industry for mixing applications and is, therefore, of direct practical rele- 
vance. Large-eddy simulat ion is a powerful  tool to study such flows, as it accounts in a 
natural way for the unsteady and quasi-periodic behavior of these flows. The results of our 
first attempt to simulate this f low by means of modeling the impact of the mechanical 
impeller on the f low field via a varying force field in space and time, reveal a fair agreement 
wi th available experimental data. In accordance wi th  measurements, it is shown that the 
thickness of the impeller blades plays an important role for the motion of the fluid in the 
vicinity of the impeller. In conclusion, the present application of LES to this engineering 
f low problem clearly shows the potential of LES as a tool to investigate turbulent f lows in 
industrial applications of practical importance. 

K e y w o r d s :  direct and large-eddy simulation; latt ice-Boltzmann scheme; fully developed 
channel f low; stirred tank reactors 

Introduction 

The lattice-Boltzmann scheme, and the closely related lattice-gas 
automata, are a particular class of numerical techniques used to 
solve the equations of motion for a time-dependent fluid flow. 
The first really successful lattice-gas automaton was introduced 
by Frisch, Hasslacher and Pomeau for the simulation of the 
two-dimensional (2-D) incompressible Navier-Stokes equations 
(Frisch et al. 1986). Since then, many variants have been pro- 
posed; e.g., for the simulation of three-dimensional (3-D) flow, 
multiphase flow, compressible flow, and non-Newtonian flow. 
Several nontrivial applications have been reported by Somers 
and Rein (1991). Extensions of the scheme to enable simulations 
of thermal flows have been published recently by Massaioli et al. 
(1993) and Eggels and Somers (1995). The purpose of the 
lattice-Boltzmann project at Shell Research is to develop a 
computational tool based on the lattice-Boltzmann scheme with 
which direct and large-eddy simulations (LES) of industrially 
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relevant flow problems can be performed. The reasons for select- 
ing this particular technique are multiple. First, the lattice-Boltz- 
mann scheme can easily handle the complex geometries which 
are almost always encountered in industrial applications. Second, 
the method is efficient from a computational point of view in the 
sense that the number of operations per gridpoint is smaller than 
for other methods, such as finite difference schemes. Further- 
more, solving (macroscopic) partial differential equations other 
than the Navier-Stokes equations in the lattice-Boltzmann 
framework is feasible with only a small effort. Finally, due to the 
strongly local character of the scheme (the local, grid point 
based, collision step of the scheme is more time-consuming than 
the global propagation step, see Eggels and Somers 1995), it is an 
attractive scheme to run on parallel computer platforms. 

This paper first reports on a validation study considering fully 
developed turbulent channel flow with heat transfer between two 
parallel plates. To check the performance of our solver without 
the influence of a subgrid-scale (SGS) turbulence model, all 
scales of turbulent motion are fully resolved in space and time in 
these simulations. The results of this direct numerical simulation 
(DNS) are compared with those reported by Kim et al. (1987). 
Next, the isothermal, single-phase, turbulent flow in a baffled 
stirred tank reactor (BSTR) is considered using LES. This kind 
of equipment is frequently used in the (petro)chemical industry 
and detailed information on the (time-dependent) flow patterns 
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in such reactors is important for an optimal design. As a first 
attempt to simulate the flow in these reactors, the "real" practi- 
cal flow problem is largely simplified by considering a single- 
phase, isothermal, Newtonian fluid. Despite these simplifications, 
the results of this study already provide insight into the flow 
patterns occurring in such systems. Profiles of mean and fluctuat- 
ing velocities for a system agitated by a standard disc turbine are 
presented and compared to experimental data. 

In the author's opinion, the full details of the lattice-Boltz- 
mann scheme are beyond the scope of the present paper. For 
reference see Eggels and Somers (1995), McNamara and Zanetti 
(1989), Succi et al. (1992) and Chen et al. (1992), together with 
the references therein. The major aspects of the applied numeri- 
cal technique are summarized only briefly here for completeness. 

The lattice-Boltzmann equation specifies the ensemble aver- 
age behavior of a lattice gas in which discrete particles of unit 
mass move with unit speed along the edges of a regular lattice 
(McNamara and Zanetti 1989). Two- and three-dimensional (2-D, 
3-D) projections of the four-dimensional Face-Centered-Hyper- 
Cubic (FCHC) lattice are commonly used for simulations of the 
Navier-Stokes equations (d'Humi~res et al. 1986). This FCHC 
lattice spans a four-dimensional space with 24 velocity directions 
ci at each grid point. Figure 1 depicts the 2- and 3-D projections 
of this lattice with 9 and 18 velocity directions ci, respectively, 
and the weight factors m~ representing the multiplicity of the 
edges due to the projection. The lattice-Boltzmann scheme solves 
the lattice-Boltzmann equation directly without instantiating a 
discrete lattice gas, but operationally the procedure is very simi- 
lar. A dimensionless mass density N i is associated with each 
velocity direction c i at each position x and time t. The evolution 
of the scheme involves two steps: a propagation step which 
shuffles all variables so that mass density N/ at position x moves 
to position x + ci, and a collision step which redistributes the 
mass densities among the velocity directions at each grid point 
locally. Basically, the scheme solves the following set of coupled 
partial differential equations OtN i + c i • V N  i = ~')i(N). 

The so-called collision operator f~i(N) depends in a nonlinear 
way on all components of the mass density vector N and is 
constrained by the basic conservation laws of mass and momen- 
tum. The hydrodynamical modes, such as density p, pressure p, 
and velocity vector u, are obtained from the mass densities N~ by 
simple summation rules. Analog to the velocity tensor nu and the 
rate of strain tensor v(Vu + (Vu) T) that appear naturally in the 
lattice-Boltzmann scheme, a turbulent stress tensor x is intro- 
duced in our lattice-Boltzmann scheme to account for unresolv- 
able velocity fluctuations at a scale smaller than the lattice 
spacing (see Eggels and Somers 1995). The standard Smagorinsky 
model (Smagorinsky 1963) without any further modifications is 
used to express this tensor in terms of known variables on the 
lattice. 

Turbulent channel flow 

Computational setup 

To check the performance of our lattice-Boltzmann solver for 
simulations of turbulent flows, direct simulations with various 
grids are performed of the fully developed turbulent flow be- 
tween two parallel plates. Heat transfer is incorporated by keep- 
ing the two plates at a constant but different temperature, the 
lower plate being warmer than the upper one. The influence of 
gravity is neglected, so buoyancy effects are not included. The 
two dimensionless parameters that describe the flow are the 
Reynolds number R e ,  and the Prandtl number Pr, which are 
defined here as R e .  = u .  H / v  and Pr = v / a  with u .  the fric- 
tion velocity based on the shear stress "r w at the wall (u2. = %/p ) ,  
H half the channel height, v the kinematic viscosity, and a the 
thermal diffusivity (p is the fluid density). In all our simulations, 
the values of R e ,  and Pr are fixed at 120 and 0.71, respectively. 
The computational domain consists of two flat parallel plates of 

Notation 

a thermal diffusivity 
c s Smagorinsky coefficient 
c i velocity direction vector 
C ratio of overlap 
D impeller diameter 
f force vector 
H half the channel height or total tank height 
k turbulent kinetic energy 
m i weight factor for direction c i 
N rotational speed of impeller 
IV/ mass density 
N mass density vector 
p pressure 
Pr Prandtl number 
r radial coordinate 
R tank radius 
Re Reynolds number based on N, D, and v 
R e .  Reynolds number based on u . ,  H, and v 
t time 
tim p thickness of impeller blades 
T tank diameter 
T* dimensionless temperature 
T' temperature fluctuation 
T c temperature of cold wall 

Th 
Tm 
L 
U ,  

Ux,  Uy ,  U z 

IA'x , U'y, bt' z 

U 

Utip 

V 
Ui 
W 

X 

y ÷ = y u , / v  

Greek 

Ot 

A ÷ = Z X u , / v  
At  

~l ÷ = ~ l u , / v  
P 

p 

or  
T 

Tw 
a i  

temperature of hot wall 
mean temperature 
impeller turn-around time 
friction velocity based on wall shear stress 
components of n 
fluctuating components of u 
velocity vector 
impeller tip speed 
local fluid velocity vector 
local impeller velocity vector 
width of impeller blades 
position vector 
dimensionless distance from the wall 

relaxation factor 
dimensionless grid spacing 
time-step 
dimensionless Kolmogorov length scale 
kinematic viscosity 
density 
correlation coefficient 
subgrid-scale turbulent stress tensor 
wall shear stress 
mass density collision operator 
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Figure 1 The two- and three-dimensional projections of the Face-Centered-Hyper-Cubic lattice correspond to an ordinary 
square and cubic lattice wi th 9 and 18 velocity directions c, respectively. The numbers along the edges indicate their 
mult ipl ici t ies m i, which, according to the original four-dimensional lattice, satisfy ~ ,m ,=  24 

size 6 H x 3 H  separated at a distance of 2 H  with periodic 
boundary conditions in the streamwise and spanwise directions 
and no-slip velocity and Dirichlet temperature conditions on 
both walls. In terms of the viscous length scale v/u , ,  the size of 
the domain is 720 x 360 x 240 in the streamwise, spanwise, and 
vertical directions. In comparison to previous direct simulations 
reported in the literature (Kim et al. 1987; Lyons et al. 1991), the 
size of the present computational domain is limited and the 
imposed periodicity may affect the flow statistics. On the other  
hand, the two-point correlation coefficients reported by Kim et 
al. are small ( <  0.10) at separation distances of half the present 
channel length, which indicates that the computational domain 
employed is not yet too small. Three direct simulations are 
performed for which all conditions except the grid spacing are 
kept constant. The uniform (for a discussion on the use of 
uniform grids, see Eggels and Somers 1995) grid spacing A + in 
terms of v/u ,  is reduced from 6.0 in the coarsest simulation via 
3.0 to 2.4 in the finest. The number  of grid points thus increases 
from 120 x 60 x 40 = 2.88-105 up to 300 x 150 x 100 = 4.5- 106. 
At  the present Reynolds number,  the Kolmogorov length scale 
11+, scaled with v/u, ,  is estimated to be about 2 (see Kim et al.). 
Following the criteria suggested by Gr6tzbach (1983), in all 
except the coarsest simulation a sufficiently fine grid is applied. 

Results 

The flow statistics obtained from the direct simulations by spatial 
averaging in the homogeneous streamwise and spanwise direc- 
tions and by time-averaging over six time-scales H/u,  are 
compared for the different grids and with the numerical results 
reported by Kim et al. (1987). Although the Reynolds number  in 
the direct simulation by Kim et al. is somewhat larger ( R e ,  = 180) 
than in the present study, the statistics in the near-wall region 
should be similar when scaled on inner scales. The mean velocity 
profile is shown in Figure 2 as a function of the distance from the 
wall in wall units. Up to y+ = 20, the results of the finest grid 
simulations closely match those reported by Kim et al. Beyond 
y + =  20, the differences in Reynolds number  appear  as deviations 
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Figure 2 Mean  s t r e a m w i s e  velocity profile as  a funct ion of 
the  d i s tance  from the  wall in wall uni ts  

of the mean velocity profiles (no log-law with "universal" coeffi- 
cients yet at R e ,  = 120). The effect of grid refinement from 
A + = 3 . 0  to A + = 2 . 4  is negligibly small. The simulation with 
& + = 6.0 obviously provides inaccurate results because of the too 
coarse grid due to which the steep gradients near the walls are 
not properly resolved. The root-mean-square (rms) velocities 
versus y/H are plotted in Figure 3. Grid refinement from 
A + = 3.0 to 2.4 again only has a limited influence on the statis- 
tics, except for the streamwise rms velocity in the core region of 
the flow (y/H > 0.4). In Figure 4, the rms velocities are scaled 
with the local mean streamwise velocity and plotted in the 
near-wall region only. According to Rai and Moin (1991), this 
way of presenting the rms velocities gives a good impression of 
the accuracy of the numerical scheme. Very close to the wall, a 
constant value of about 0.36 should be found for the streamwise 
velocity fluctuations. From the present simulations, we obtain 
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Figure 3 Root-mean-square (rms) veloci t ies as a funct ion of 
the distance from the wal l ;  the s t reamwise,  normal - to- the-  
wal l  and spanwise  components  are denoted by x, y, and z, 
respect ively 

0.336 (A ÷ = 3.0) and 0.354 (A + = 2.4), which is in close agreement 
with the results reported by Kim et al. and Rai and Moin. The 
decrease of the streamwise velocity fluctuations when moving 
away from the wall is in excellent agreement with Kim et al. Also 
the vertical velocity fluctuations agree well, but the spanwise 
fluctuations are somewhat lower in our simulation, most pro- 
nounced, but not limited to, the vicinity of the wall. The observa- 
tion that the spanwise fluctuations are also too low in the 
interior of the channel suggests that the limited spanwise extent 
of the channel may have had an effect on spanwise motions• 
Figure 5 shows the dimensionless temperature distribution T* = 
( 2 T  m - T h - T ~ ) / ( T  h - T c)  ( T  h and T~ denote the temperature of 
the hot [lower] wall and the cold [upper] wall, respectively) for 
the hot wall together with the correlation coefficient PT. It is 
defined here as: 

PT 
a x , r m s T r m s  

and expresses the correlation between the streamwise velocity 
fluctuations u'  x and the temperature fluctuations T'. Near the 
hot wall, OT approaches unity, which indicates that locally high 
temperatures are found in low-speed regions; whereas, locally 
low temperatures are found in regions with high streamwise 
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Figure 4 Root -mean-square (rms) veloci t ies scaled wi th  the 
local mean s t reamwise  veloci ty  in the near-wal l  region 
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Figure 5 Mean temperature  d is t r ibut ion T* and correlat ion 
coeff ic ient Pr across the channel  f rom the hot wal l  up to the 
center l ine 

velocity. This picture is consistent with the concept of ejections 
and sweeps transporting relatively warm low-speed fluid away 
from the wall and relatively cold high-speed fluid from the 
interior towards the wall. Near the cold wall, the overall picture 
is just opposite with Pr now approaching - 1. Here the near-wall 
low-speed fluid is colder than the ambient fluid; whereas, the 
high-speed fluid coming in from the interior is relatively warm. 

Baf f l ed  st i r red t a n k  r e a c t o r  f l o w  

Impeller modeling 

One of the flow problems frequently encountered in the 
(petro)chemical industry is the flow in a stirred vessel, mechani- 
cally driven by an impeller. Information on the (time-dependent) 
flow field in the vessel is important for an optimal design of the 
reactor, because the efficiency of such systems depends, among 
other things, on the flow generated by the impeller and, there- 
fore, on the shape of the impeller, its position in the reactor, its 
rotational speed (in general, the operational conditions), and the 
vessel geometry. Numerical simulations of such reactor systems 
are helpful to investigate the effects of different impeller shapes, 
vessel geometries, and operational conditions in order to provide 
designers with detailed information. In contrast to computations 
that directly solve the time-averaged Navier-Stokes equations 
using conventional turbulence models, the unsteady and quasi- 
periodic behavior of the flow in such configurations can be 
accounted for in a natural way using LES. Furthermore, LES 
data can increase our insight and understanding of the dynamical 
behavior of such systems. Therefore, if it is possible to model the 
impact of a mechanical impeller via a spatially a n d / o r  tempo- 
rally varying force field f(x, t) on the momentum equations of the 
fluid, then it is possible to simulate flows in stirred vessels with 
our lattice-Boltzmann solver, because it can easily account for 
such spatially a n d / o r  temporally varying force fields. A first such 
model as that which has recently been implemented in our 
solver, is one in which the force vector f(x, t) depends linearly on 
the difference between the local fluid velocity vector Uf and the 
local velocity vector of the impeller Ui: 

f(x, t) = c~C(x, t)o(Ui(x , t) - Uf(x, t ) ) / A t  

The idea of this model is to force the fluid velocity vector 
loca l l y  to the velocity vector of the impeller, preferably within 
one (or a few) time-steps At, as if the impeller were actually 
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present at that location. The relaxation factor ~ controls the 
speed at which the fluid velocity responds to the impeller velocity 
and should be somewhat smaller than unity. With ct equal to 
unity, the fluid velocity is forced instantaneously to the local 
impeller velocity. Such a rapid response, however, may give rise 
to instabilities or oscillations. On the other hand, we do not want 
to fix a at a too small value, because we want the fluid to 
respond rapidly to the motion of the impeller. Therefore, the use 
of a value for a that is somewhat smaller than unity is recom- 
mended. In the present simulations, we imposed, rather arbitrar- 
ily, a = 0.95. Further investigations focusing on the influence of 
different values for a are certainly required. The coefficient 
C(x,t) in the model varies between 0 and 1 and controls where, 
when, and to what extent the force field actually acts on the 
momentum equations of the fluid. It should be interpreted as the 
ratio of overlap of a grid volume with the volume of the impeller. 
The local value of this coefficient as a function of time, there- 
fore, depends on the shape of the impeller and its position and 
orientation in the computational domain. Obviously, its value has 
to be evaluated every time-step for a selected range of grid 
points. 

Configuration 

To check the performance of this model accounting for the 
presence of a mechanical impeller, the turbulent flow in a 
standard configuration consisting of a vessel with four baffles 
and a 6-blade disc turbine is simulated. This configuration has 
been studied extensively in the past, both experimentally and 
numerically (see, e.g., Ranade and Joshi 1990a, 1990b and the 
references therein), and should, therefore, be regarded as a 
suitable test case. The standard Smagorinsky model (Smagorin- 
sky 1963) without further modifications and with c, = 0.10 is 
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applied in our LES for modeling the subgrid-scale stresses. The 
vessel configuration together with a sketch of the impeller shape 
in front and top view are shown in Figure 6. In the simulations, 
the shaft on which the impeller is mounted is neglected. At the 
side wall and the bottom of the vessel, no-slip velocity conditions 
are applied; whereas, at the top of the vessel, a fiat free surface 
is effectuated through the use of free-slip velocity conditions. 
The Reynolds number defined as Re = N D 2 / v  with N the 
rotational speed of the impeller equal to 250 [rpm] (the impeller 
turn-around time T o = 0.24 [s]) and D = 160 [mm] the impeller 
diameter, is equal to 1.07.105 . This value is sufficiently large to 
assume that the turbulence is fully developed. 

Temporal monitoring of the velocity and the energy levels in 
a subsection of the vessel revealed that at least 30T o should be 
simulated when starting from zero velocity fields before the flow 
reaches a quasi-steady state. This is illustrated in Figure 7, where 
the evolution of the resolved and subgrid-scale turbulent kinetic 
energy, averaged over the upper half part of the reactor, is 
plotted as a function of time for one of those simulations. Once a 
quasi-steady state has been reached, low-frequency variations 
with a time-scale of the order of 10-20T o are observed, which 
indicate that the sampling interval for collection of the flow 
statistics should be sufficiently long to capture these low- 
frequency variations. Such low-frequency variations have also 
been observed experimentally. 

The results of two BSTR simulations are reported in the next 
section. These two simulations are largely the same, except for a 
few parameter settings. The first parameter that is changed is the 
spatial resolution. Simulation A is performed using a uniform 
grid size of 4 mm; hence, with a spatial resolution of 1203 = 1.73. 
106 grid points. In simulation B, the grid spacing is halved to 2 
ram, which brings the number of grid points at 2403 = 13.8.106. 
With the refinement of the grid, the thickness tim p of the 
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Figure 6 Vessel conf igurat ion and shape of the applied 6-blade disc impeller; the shaft on which the impel ler is mounted is 
neglected in the simulat ions; the rotat ional  speed of the impel ler is f ixed at 250 rpm 
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Figure 7 Evolution of the resolved and subgrid-scale turbu- 
lent kinetic energy as a function of time; for scaling pur- 
poses, the subgrid-scale energy is mult ipl ied by 3000; the 
kinetic energy is scaled with U2p; note that in this upper part 
of the reactor, the subgrid-scale energy is extremely small 
compared to the resolved kinetic energy 

impeller blades is also reduced from t im  p = 4.0 mm (0.125 w, with 
w the width of the impeller blades equal to 0.2D) for simulation 
A to tim p = 2.2 mm (0.069 w) for simulation B. From earlier 
experiments, it is known that the thickness of the impeller blades 
can have a substantial effect, especially on the fluctuation levels 
of the velocity components (H. R. E. van Maanen personal 
communication, Shell Research, Amsterdam). To match closely 
the thickness of the blades used in the experiment (0.105 w for 
the measurements reported by Bakker 1995), the blade thickness 
in the simulations is reduced with decreasing grid spacing. (A 
blade thickness smaller than the grid spacing cannot be ac- 
counted for properly in the present impeller model. Effectively, 
the model will mimic a more or less porous impeller blade in 
such situations. Therefore, the blade thickness must be rather 
large in simulation A to remain of the order of the grid spacing.) 
As we will see later, grid refinement and the reduced thickness of 
the impeller blades, indeed, have a reasonable influence on the 
flow statistics near the impeller. The second parameter that is 
changed is the length of the sampling interval. In simulation A, 
the length of the sampling interval is 30To, in B it is 8T o. In B, it 
is shorter only to keep the required CPU time within limits. The 
consequence, however, is that the statistics are influenced by the 
limited length of the interval, which is apparent from the fact 
that the statistics are not yet symmetric with respect to the 
symmetry axis of the configuration (statistical noise). To limit the 
CPU time of simulation B further, it is started from a velocity 
field stored during simulation A, being interpolated to the proper 
spatial resolution. Simulation A, on the other hand, is started 
from a zero velocity held. 

Finally, a few words about the computer demands for this 
kind of simulations. All simulations are performed running in 
parallel mode on the IBM/SP2.  Using the 4.0 mm grid with 1203 
grid points, the maximal memory demand during "on-the-fly" 
averaging of the statistics is about 550 Mb. The CPU time per T o 
(750 time-steps) is about 1 hour on 8 nodes of the S P / 2  without 
averaging and 1.6 hours with averaging. (The "on-the-fly" averag- 
ing procedure to collect the flow statistics requires additional 
work to be done and data exchange (communication) between 
the various processors. This overhead can be significant, espe- 
cially when the sample frequency is high.) Therefore, a typical 
simulation running for 20T o to develop and 40T o to collect the 
statistics takes about 85 hours. On the 2.0 mm grid with 2403 grid 
points, the maximal memory demand during the "on-the-fly" 

averaging stage is 2200 Mb. This simulation required 7 CPU 
hours per T O (1500 steps) on 16 nodes IBM/SP2  in single 
precision (8.8 hours during averaging with the sample frequency 
set to every fifth time-step). Obviously, these kinds of simulations 
can easily run for hundreds of CPU hours and, therefore, require 
careful timing and preparation. 

Resu~s 

The overall flow pattern in the reactor is illustrated in Figures 
8-11 showing instantaneous and time-averaged vector fields in a 
vertical midplane of the reactor and in a horizontal plane just 
above the impeller. These plots are obtained from simulation A 
and shown on the same resolution as that applied in the simula- 
tion. The impeller located at z = 0 is not visible directly but only 
indirectly through the flow field. In Figure 9, small trailing 
vortices are visible at the "inside" of the six impeller blades. In 
the mean, evidently, they vanish. Unless stated otherwise, all 
velocities presented further on are scaled with the tip speed of 
the impeller, defined as Uti p = ~rD/To, and shown for a plane in 
the middle between two baffles. In each of the following figures, 
the upper plot shows the data obtained from simulation A, and 
the lower plot shows those from fine-grid simulation B. The 
numerical data are represented by the lines, and the correspond- 
ing experimental data, by markers. 

Figures 12 and 13 show the mean and rms velocities of the 
radial component in the impeller stream for various radial posi- 
tions r / R  = 2 r / T  from the impeller centerline. The flow gener- 
ated by the disc impeller closely resembles a jet in the impeller 
stream, characterized by a decreasing mean radial velocity on the 
centerline ( 2 z / w  = 0) and an increasing width of the jet down- 
stream as a result of entrainment. Agreement of the numerical 
data with the experimental ones of Wu and Patterson (1989) is 
acceptable, in particular for simulation B. In simulation A, the 
maximal radial velocity is found away from the impeller, in 
contrast to the experiment and simulation B. This might be due 
to the fact that the impeller blades in this simulation are thicker 
than in the experiment and in simulation B. A similar behavior is 
also found in experiments of Ranade and Joshi (1990a, p. 23), 
although it is not clear from their paper under what conditions. 
The rms velocity shown in Figure 13 are somewhat larger near 
near the impeller in simulation B compared to A (this effect is 
stronger for the tangential and axial components, not shown 
here). The reason for this is that the impeller blade thickness in 
the fine grid simulation is smaller than in the coarse grid simula- 
tion. As already mentioned before, we know from experiments 
that this effect, indeed, enhances the velocity fluctuations, at 
least near the impeller. Away from the impeller, say for r / R  > 0.6, 
the deviations between the rms velocity profiles from the two 
simulations rapidly diminish. 

Figures 14 and 15 show the mean and rms velocity profiles 
along a vertical traverse running from the bottom of the reactor 
( z / D = - 1 )  up to the free surface ( z / D =  2) at the radial 
position r / R  = 0.340. Both the radial and axial components are 
shown and compared with the experimental data by Bakker 
(1995). For the mean flow and the rms, two lines are shown 
simultaneously for the simulations taken from opposite sides of 
the symmetry axis of the configuration. The deviations between 
the two lines illustrate the asymmetry of the statistics because of 
the limited length of the sampling interval. The overall agree- 
ment between simulations and experiments is good. The axial 
rms velocity near the impeller is strongly affected by the increase 
of the resolution and related reduction of the blade thickness. 
Some specific details of the profiles in the vicinity of the im- 
peller, however, are not yet predicted in complete agreement 
with the experiments; e.g., the local minimum of the mean axial 
velocity around z / D  = - 0 . 1 0  and the asymmetry of the axial 
rms peaks. It is not inconceivable, in this respect, that subtle 
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Figure 8 Instantaneous vector f ield of the turbu lent  f low in a vert ical midplane of the st irred reactor tank; the impel ler  located 
at z = 0  is only indirect ly v is ible through the f low f ield because its presence is modeled in terms of a varying force field; the data 
are taken from s imula t ion A; the resolut ion shown in th is plot is the same as appl ied in the s imulat ion 
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Figure 9 Same as in Figure 8, but now for a horizontal plane just above the impel ler (2z/w= 1.125) 
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Figure 10 Same as in Figure 8, but now for the mean f low 

X=240 
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Figure 11 Same as in Figure 9, but now for the mean f low 
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impeller blade details, such as rounded tip corners or minor 
imperfections that  are not accounted for in the present simula- 
tions, play an important  role in the establishment of the fluctua- 
tion levels this close to the impeller. 

Finally, in Figures 16 and 17, the radial and axial mean and 
rms velocity profiles are shown along a horizontal traverse 
through the impeller midplane (z = 0). The jet-like behavior of 
the flow in the impeller stream is evident. The asymmetric global 
circulation in the reactor due to the fact that the impeller is 
placed at z = 1 / 3 v H  together with the free surface at the top in 
contrast to the solid wall at the bottom, is apparent  from the 
mean axial velocity profile in Figure 17. Here, we clearly see 
downflow near the wall in the impeller midplane as a result of 
the impeller jet being deflected upward. 

Conclusions 

The direct numerical simulation results presented in this paper 
show that the lattice-Boltzmann scheme can be used successfully 
to simulate turbulent flows. In our first at tempt to simulate the 
turbulent flow in a baffled stirred tank reactor by means of 
large-eddy simulation, the concept of modeling the impact of a 
mechanical impeller on the flow field by means of a spatially 
a n d / o r  temporally varying force field is explored. Despite its 
simplicity, this model already appears to do a satisfactory job, 
because it generates statistical results, both mean flow and 
turbulence intensities, in close agreement with experimental data 
for the test case considered here. A major advantage of the 
model is that it allows in a straightforward way to evaluate 
different impeller shapes and tank geometries, and it permits 
scale-up studies of single-phase reactors. Because no information 
other than the impeller shape and its way of motion through the 
flow is required, such predictive studies can be realized. On the 
other  hand, a disadvantage of the model is that the smallest scale 
of the impeller, here the thickness of its blades, must be at least 
of the order of the grid spacing. This condition may put a high 
demand on the resolution if this smallest scale is small compared 
to the diameter  of the impeller and, the impeller, in turn, is small 
compared to the overall size of the reactor. Furthermore,  in view 
of the strong " in termit tent"  behavior of the flow, especially in 
the vicinity of the impeller, more advanced subgrid-scale turbu- 
lence models, such as the  dynamic SGS model or those account- 
ing for stochastic baekscatter, might do an even bet ter  job in 
simulations of this configuration. This issue will be addressed in 
the future. Nevertheless, it is clear from the present application 
that LES can be used to solve practical flow problems in engi- 
neering applications. 
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